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Abstract

A controller for a European style traffic light was constructed using a simple finite state machine.
The controller was built to learn about VHDL coding, CPLD programming, RAM timing and
dealing with complexity in complicated projects. By using a “Keep it Simple” methodology, the
complexity of the system as a whole was kept to a minimum, and resources were efficiently used.
After an initial complexity nightmare, the device was built incrementally so that when errors did
occur, their causes were easier to determine.
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Overview

The traffic light controller controls the red, yellow and green traffic lights for both streets in a
ple intersection. One street is considered the main street and one is considered the side st
Both a walk button for pedestrians and a traffic sensor for the side street are included. Whe
ning, the lights are either in blink mode or they are in run mode. The time that each particular
figuration of lights remains lit is programmable and can be between 1 and 15 seconds inclu
The timing information is stored in a random access memory (RAM)). A user can examine 
contents of the RAM by placing the device in the show memory mode.The user can set the t
parameters which are used to control the light interval using the store memory mode. The us
set four RAM locations (TBLINK, TYEL, TBASE and TEXT) corresponding to the four timin
parameters.

Figure 1: Street and traffic light arrangement

When not setting or viewing memory, the traffic lights are either running or blinking. The tra
tions between states are accomplished by setting an internal countdown timer which asser
expired signal after the specified number of seconds has elapsed. The expired signal trigge
finite state machine (FSM)) to go to the next state. When transitioning to the next state, the
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selects which timing parameter to use, reads the parameter’s value from the RAM and sets
countdown timer to count that many seconds and waits for the expired signal.

Blink Mode
When in blink mode, the traffic lights alternate between two states. The first state has the m
street’s red and side street’s yellow light on. The next state has the side street’s red light an
main street’s yellow light on. The lights alternate between these two states every TBLINK s
onds.

Run Mode
When in run mode, the traffic lights operate as a normal set of traffic lights in Europe. The d
ence between European traffic lights and American traffic lights is that just before a light tu
from red to green, both the yellow and red lights are displayed for a short period of time. Th
time gives motorists a chance to start their cars if they have turned them off while waiting for
turn to go. The specific cycle of the lights is modified by both the walk button and the traffic
sor.

The lights begin with the main street showing green and the side street showing red for a per
TBASE + TEXT seconds. Then the main street shows yellow and the side street shows red
yellow for a period of TYEL. If the walk button has been pressed at any point during the cu
cycle, all of the traffic lights for both streets turn on for TEXT seconds to allow the waiting pe
trian to cross the street in safety. After the walk signal is finished or if the walk button was n
pressed, the main street’s light shows red and the side street’s light shows green for a perio
TBASE to allow waiting cars to go. If the traffic sensor reports that there are still cars on the
street after those TBASE seconds, the side street remains green and the main street stays
an additional TEXT seconds. Afterwards, the side street’s yellow and the main street’s yellow
red lights are illuminated for TYEL seconds. Then the cycle repeats again.

Table 1: Traffic light controller inputs

Input Purpose

f0,f1 Select the mode of the traffic light.

l0,l1 Specify the location in memory when in show memory or store memory
modes.

c0,c1,c2,c3,c4 Specify the contents to store in location l0,l1 when in store memory
mode.

go Changes the current mode of the traffic light controller to that specified
by f0,f1.

reset Resets the controller, and returns the machine to the show memory loc
tion mode.

walk Button for pedestrians to press when they wish to cross the street.

traffic_sensor Asserted when there are cars on the side street traffic sensor.
Andrew Lamb 6.111 Lab 2 Page 6
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The walk button can be pressed at any time in the cycle, but the lights only go into walk mod
lights on) after the main street has been green. Pressing the walk button multiple times in a
ular cycle has no additional effect.

The traffic sensor pulses as cars drive on and off of it, leading to the possibility of missing th
nal when the FSM decides whether to keep the side street green for the additional TEXT sec
With specialized circuitry, the controller keeps the sensor signal high for several seconds a
car has passed to avoid this pulsing problem.

Show Memory Location
When the device is placed into show_memory mode, the memory data HEX LED shows the
stored in the RAM at the location specified by the memory location switches (see Figure 2)

Store Memory Location
When the go button is pressed, the value on the inputs c0,c1,c2,c3 are stored into memory
location specified by l0,l1. The machine must be moved out of store memory location mode
before one can program another memory location. This is accomplished by resetting the ma
after the value has been successfully stored

User Interface
Using the 6.111 lab kit that was supplied, the user interface of the device is shown below. A
tionally, the values of the various functions and memory locations are enumerated in Table
Table 3.

Figure 2: User Interface
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Description

The five components of the traffic light controller were the finite state machine (FSM)), a RAM
clock divider, a one second timer, and a count down timer. Figure 3 is the system block dia
The FSM, one second timer and the count down timer were implemented using a single CP
6264 SRAM was used for storing timing parameters, and the clock divider was implemented
a crystal oscillator and a pair of ‘393 dual four bit binary counters. Each of the modules and
particular implementation is described below. Also included is why each implementation wa
chosen.

Table 2: Function encodings

Function Encodings(f1f0)

Show Memory Location 0 0

Store memory location 0 1

Run lights 1 0

Blink lights 1 1

Table 3: Memory Address Encodings

Address Encodings (a1a0)

TYEL 0 0

TBASE 0 1

TEXT 1 0

TBLINK 1 1
Andrew Lamb 6.111 Lab 2 Page 8
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Block Diagram
Figure 3: High level block diagram of the traffic light controller

Finite State Machine
The FSM is responsible for coordinating activities among the different modules. In the syst
diagram in Figure 3, the FSM is contained inside of the FSM Block which handles synchron
tion of input and output signals. The synchronization hardware and implementation rationa
described in the FSM Block explanation below.

The state transition diagram in Figure 4 shows the details of the FSM’s behavior, all possib
states and the rules for transitioning from one state to the next.

FSM Block
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Figure 4: State Transition Diagram

FSM Block design
The FSM has 11 states and is not overly complicated. All of the transition arcs are triggered b
reset signal, the go signal, or the expired signal. If reset is ever pressed, the controller retu
the show memory mode. If go is pressed, the controller goes to the mode specified by inpu
and f1. If the controller is in either blink or run mode, the expired signal causes the transitio
the next state of lights. Because the FSM was kept to such a small number of states, timing
dominated its design.

Go = ’1’ and
F=Store Memory

store_mem

A0 = L0
A1 = L1

nwe = ’0’

show_mem

A0 = L0
A1 = L1

nwe = ’1’

nwe is strobed while the data from
the switches is driven on to the bus
causing the value of c0-4 to be stored
in memory location l1l0.

l0 and l1 are driven to the memory address
locations a0 and a1 so the RAM displays
the current contents of that location.

Go = ’1’ and
F=Show Memory

reset = ’1’

Blink1

A=TBLINK
nwe = ’1’

my,sr

Go = ’1’ and
F=Blink

mgsr

A=TBASE

Go = ’1’ and
F=Run Lights

Main street has 
yellow light on
Side street has 
red light on

Blink2

A=TBLINK
nwe = ’1’

mr,sy

Main street has
red light on
Side street has
yellow light on

exp = ’1’

exp = ’1’

Notes:
1.mgsr implies:
  (m)ain street is (g)reen
  (s)ide street is (r)ed.
2.On each transition, start_timer is 
  asserted, and for only one clock cycle. 

mgsr2

A=TEXT

mysry

A=TYEL

walk

A=TEXT

mrsg

A=TBASE

mrsg_ext

A=TEXT

mrysy

A=TYEL

exp=’1’ exp=’1’
exp=’1’ and

walk_req=’0’

exp=’1’ and
walk_req=’1’

exp=’1’ | 
walk_reset =’1’

exp=’1’ and
traffic_sensor=’1’

exp=’1’

exp=’1’ and
traffic_sensor=’0’

exp=’1’
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To avoid corrupting the timing data stored in RAM, the write enable for the RAM must be a
for only one clock pulse while the data and address have stabilized (see the RAM section b
for a timing diagram). Also, the write enable pulse should occur for only one clock cycle to a
corrupting the RAM by allowing the input data to change. One possible strategy is to introd
three states in the FSM for writing to RAM. One state would be responsible for setting the ad
and data, the next for asserting the write enable signal and the final state to unassert the w
enable signal. This approach was discarded because it introduced unnecessary complexity i
FSM.

In place of multiple states, a special synchronizer (Figure 5) circuit was constructed which 
delays the write enable signal and asserts it for exactly one clock cycle. The FSM can then
the write enable signal for as long as it is in the store_mem state and not worry about corru
the RAM because the write enable signal the RAM receives will only be active for a single 
period. The disadvantage to this design is that resetting the leveltopulse circuit requires the
enable to be reset, and this requires the FSM to be taken out of store_mem mode. Taking 
machine out of store memory mode is most easily accomplished by using the reset button to
the FSM to the show memory mode.

Figure 5: Leveltopulse circuit

Using this design, the user is more likely to get confused because of the need to reset the m
between writes, but the overall system complexity is less. However, programming timing par
ters is not a common operation. Instead of simplicity in programming, simplicity in design te
to make systems more reliable. The extra time necessary to learn the controller’s programm
procedure is not an undue burden because of its rarity, and the additional reliability introdu
worth the trade-off.

While in run or blink mode, the FSM goes to the next state when the expired (exp) signal is
asserted. The FSM sets the RAM address (a1a0) to the address for the next state (e.g. TB
TYEL, TEXT or TBASE), and asserts the start_timer signal. The start_timer signal tells the
countdown timer (DTimer module) to save the value the RAM is currently writing to the
memory_data bus and begin counting. When the DTimer has counted to the specified valu
asserts the expired signal, causing the cycle to be repeated.

It takes a full clock cycle after the address has been asserted for the RAM to place the corr
value on the memory_data bus. If both start_timer and the address were asserted on the s
cycle, the value saved by the count down timer would be the RAM’s contents at the previou
asserted address. Hence, start_timer needs to be asserted one cycle after the address is a

pulseout

level to pulse
levelin pulseout

 D   Q D   Q D   Q
levelin x y z

    /Q
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One possible approach that was discarded was three states in the FSM for each transition
state would be to set the address, another to start the timer, and a third to wait for the expir
nal. This design would increase the number of states required by a factor of three, and hen
not acceptable due to the goal of design simplicity.

Instead of multiple states for each traffic signal, a one clock cycle delay was placed on start_
between the FSM and the DTimer using the leveltopulse circuit. This gives the RAM a cycle
prepare the appropriate output before starting the timer, and keeps the start_timer signal fr
being asserted multiple times and thereby resetting the timer continuously.

Figure 6: FSM Block Diagram with synchronizer.
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Events in the real world such as pressing the walk button and setting function switches do no
pen synchronously to the system clock. Hence, all user input was synchronized before being
as inputs to the FSM to avoid unwanted transitions.

The switch input from the signals f0,f1,a0,a1 and reset were synchronized using D flip flops
ensure valid data at the rising edge of each clock cycle. The go signal was synchronized usi
same leveltopulse circuit that the write enable pulse used. The leveltopulse circuit ensures th
go signal is asserted for only one clock cycle every time it is pressed. The signal from the t
sensor was synchronized using the pulsesaver circuit (Figure 7) which remains high for sev
cycles after its input has been asserted. The traffic sensor signal was saved so that if a car h
pened to have just rolled off of the sensor before the next one rolled on, and the FSM was de
to give the side street more time with the green light, the traffic_sensor input would still be
asserted and the FSM would give the side street the additional time.

Figure 7: Pulsesaver circuit

The walk button is a special case of user input. A walk request is only handled at a single po
the traffic light cycle. When a user presses the walk button, the traffic light controller needs
remember that it was pressed even though the request might not be handled until several t
tions later. An SR latch was used to save the pedestrian’s request. After the FSM has succe
serviced the walk request, it resets the latch via the walk_reset signal. Figure 6 shows all o
synchronization circuitry within the FSM Block.

Table 4 summarizes all of the outputs and state encodings of the FSM.

Table 4: FSM state encodings and outputs

rm ym gm rs ys gs state Addr a1 a0
state

encoding

1 0 1 0 0 0 store_mem user l1 l0 0110(6)

0 0 0 1 0 1 show_mem user l1 l0 0101(5)

0 1 0 1 0 0 blink1 TBLINK 1 1 0111(7)

1 0 0 0 1 0 blink2 TBLINK 1 1 1000(8)

0 0 1 1 0 0 mgsr TBASE 0 1 0010(2)

0 0 1 1 0 0 mgsr2 TEXT 1 0 1011(A)

 D   Q  D   Q D   Q D   Q
a w x y z

async

pulsesaver
a async
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A 6264 RAM was used to store the timing data. The RAM’s address bus was run by a CPL
put and hence was susceptible to glitches. If the address changes while the RAM is readin
RAM could retrieve the wrong data. To ensure that the address asserted did not change du
write pulse, the /CS (Chip Select) was wired to the clock. Since the actual data write occurs
both the /WE (write enable) and /CS are low, the address output from the CPLD has half a
cycle to stabilize before the RAM was allowed to write. Because the system clock is fairly s
(see the clock divider section), a half cycle clock delay was plenty of time for the address o
to stabilize.

Figure 8: RAM data write timing diagram

Similar timing issues are involved in reading data from the RAM. The RAM’s address must
held stable for a period of time before any data can be read from its data port. As explained
FSM section, the FSM asserts the data address a full clock cycle before data was read from
RAM. The extra cycle allowed the RAM enough time to present the data corresponding to t
new address on the memory_data bus.

Clock Divider and One Second Timer
The one second timer’s function was to assert a signal, onesec, every second. A 1.8432 MH

tal oscillator was used as the base timer for the system. 1.8432x106 pulses from the crystal occur
every second.

0 0 1 1 0 0 mysry TYEL 0 0 0011(3)

1 1 1 1 1 1 walk TEXT 1 0 0100(4)

1 0 0 0 0 1 mrsg TBASE 0 1 0000(0)

1 0 0 0 0 1 mrsg_ext TEXT 1 0 1001(9)

1 1 0 0 1 0 mrysy TYEL 0 0 0001(1)

Table 4: FSM state encodings and outputs

rm ym gm rs ys gs state Addr a1 a0
state

encoding

/CS=CLK

/WE=nwepulse

Address starts to change
RAM is only write enabled here
Andrew Lamb 6.111 Lab 2 Page 14
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Figure 9: One second generator block diagram

One simple solution for the one second timer is to create a 21 bit counter using a CPLD and

up to 1.8432x106 from 0. This takes a lot of CPLD resources because the compiler attempts
make the fastest 21 bit counter possible. In similar designs which used this method, it was 
sary to use a separate CPLD to accommodate the one second timer in addition to the CPL
to accommodate the FSM and countdown timer.

Since the goal of this design was simplicity, adding another CPLD to the design was unacc

able. Instead, by noticing that 1.8432x106 is 11100001000000000000 in base 2, the first 13 bits
counting can be done outside of the CPLD. It is not necessary to have a very fast system c
since the machine only has to transition at most once a second. Doing the first 13 bits of di

externally, the system clock ran at 1.8436/213 MHz.

To accurately time a second, the one second timer module counts up to 11100001 in binar
asserts the onesec signal and then resets its internal counter. When the start_timer is asse
the FSM, the internal counter is also reset. This reset is done so that the onesec pulses are
ated every second starting from when the start_timer was asserted.

Two ‘363 dual 4 bit binary counters were used to perform the first 13 bits of clock division. F

counter modules were used, and the 13th bit as shown in Figure 9 was used as the system cloc

Figure 10: External clock divider

Divider
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Count Down Timer (DTimer)
Figure 11: Countdown timer (DTimer) block diagram

The countdown timer was implemented in VHDL and then programmed into the main CPLD.
timer waits until it receives a start signal, at which point it latches its max_cnt input, resets 
internal counter, and begins counting every second. The current count is passed to the out
cur_cnt so the user could observe the current time. The countdown timer is clocked with the
system clock, but its internal counter is only enabled when the onesecond signal is asserte
hence it only counts once a second. The onesecond signal comes directly from the clock d
module explained above. When the internal counter is equal to the stored max_cnt, the coun
timer asserts the exp signal and stops counting. By asserting the expired signal, the DTimer
the FSM to transition to the next state.

Testing and Debugging

Because traffic light controllers are something that I took for granted in my daily life, origina
this project seemed very simple. I programmed my FSM in VHDL, ran extensive simulations,
satisfied that it worked the way that I wanted and burnt the resulting file on to a CPLD. I pow
it up and (not surprisingly) it did nothing. I had no idea what the problem was or even wher
begin looking for a solution. The lesson I learned was to build the system incrementally. That
when something doesn’t work, you have made only a small number of changes that could 
responsible. I adopted this strategy and set about creating the traffic light controller.

I started debugging by first sitting down with my VHDL code and setting the pin assignmen
the user interface specified above. While the CPLD has many connections in the lab kit, th
VHDL compiler does not know anything about them. The results of this spending a lot of tim
programming pin numbers was that I could see exactly what state the FSM was in any part
time, and get an idea as to what was happening internally.

Then, I removed the FSM entirely from the design, and focused on getting the timing worki
correctly. I spent quite a while before realizing that the ribbon cable that connects the CPLD b
to the lab kit via the K1 interface does not work if you plug it in backwards. After I got past 
glitch, and I had visual confirmation that my one second timer was working (via LED0 flashin
moved onto the FSM.

I gutted the majority of the VHDL code for the FSM, leaving only the save_mem and show_m
states. After making some procedural mistakes such as programming the CPLD without disa
the clock, I got the basic FSM to change states by pressing the reset and the go buttons. O
was satisfied that the write enable and the start_timer signals were being correctly asserted
nected the RAM. I wired the RAM to the appropriate signals, and hooked up the data switch

DTimer cur_cnt

start max_cntexp

clk

onesec
Andrew Lamb 6.111 Lab 2 Page 16
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the memory busses using tristate drivers in a ‘244 chip. To my surprise and great relief, wh
tried to store data to the RAM, the controller worked on the first try.

With the show_mem and store_mem states working, I added the code for the two blink states
into the FSM. If I could get the controller to blink, I would know that the DTimer module was
counting down and exerting the expired signal correctly. When I first inserted the code, it di
work because the expired signal was continually asserted. When the expire signal was ass
the FSM could not restart the timer because to asserting the start timer signal required tha
expired signal be unasserted. I inserted the leveltopulse circuitry between the timer and the
(as described above) to fix the problem. With that fix, I had a blinking traffic light.

Then, I added in the main signal sequence still leaving out the go and walk states. Since I ha
ten the blink sequence to work correctly, I expected the main sequence to work as well, and
on the first try. Then I restored my original tested VHDL code for dealing with walk requests
recompiled, and reprogrammed the CPLD. Happily, the walk button functionality also worke
the first try. Then I recompiled again, adding back the traffic sensor functionality. It also wor
on the first try. I believe that these additions worked on the first try because I had already d
with all of the timing bugs in previous debugging and I had initially thought about and desig
for synchronization issues. However, by implementing the design incrementally, I could ens
that I had the basic timing issues solved before adding more complicated functionality.

I had a working traffic light, and I was about to try to get it checked off by a TA when I notic
that the behavior was not quite right. The timer was counting correctly, but the value that it 
counting up to was the value specified for the previous RAM location. After thinking about t
for a while, I realized that the DTimer was latching the value on the memory bus the same 
that the address was being asserted. Furthermore, the RAM didn’t actually write data to the
until the last half of the cycle when the clock signal was low because the /CS line was wired t
system clock. Hence, I needed to delay the starting of the count down timer for one cycle t
the RAM time to write the correct value onto the memory data bus. By adding a D flip flop in
FSM block, I fixed the bug.

Conclusion

The design for the traffic light controller had simplicity as its goal. By using introducing simp
circuitry to delay signals as they traveled though the system, many FSM states to setup the
were avoided. By moving a large portion of the clock division into external counters, the VH
code was smaller, simpler and fit on one CPLD. Since all of the design fit onto one CPLD, 
complexity in using two CPLDs was avoided. An implementation methodology of incremen
addition, adopted after an original complexity nightmare, served well to keep errors localized
easy to correct.

Appendices

Lab Notes
(Please see attached sheets)
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CPLD Macrocell Utilization
  Information: Macrocell Utilization.

                     Description        Used     Max
                 ______________________________________
                 | Dedicated Inputs   |    1  |    1  |
                 | Clock/Inputs       |    4  |    4  |
                 | I/O Macrocells     |   51  |   64  |
                 | Buried Macrocells  |   25  |   64  |
                 | PIM Input Connects |   88  |  312  |
                 ______________________________________
                                         169  /  445   = 37  %

                                      Required     Max (Available)
          CLOCK/LATCH ENABLE signals     1            4
          Input REG/LATCH signals        7           68
          Input PIN signals              0            0
          Input PINs using I/O cells    23           23
          Output PIN signals            28           41

          Total PIN signals             56           69
          Macrocells Used               53          128
          Unique Product Terms         161          640

D Flip Flop VHDL Code
-- This comment is before the library and use clauses.
library ieee;
use ieee.std_logic_1164.all;

-- a D type flip flop
entity mydff is
  port (d,clk : in std_logic;
        q : out std_logic);
end mydff;

-- here is the architcture
architecture comp of mydff is
begin
  process(clk)
  begin
    if rising_edge(clk) then
      q <= d;
    end if;
  end process;
end comp;
-- This comment is before the library and use clauses.
library ieee;
use ieee.std_logic_1164.all;

-- a D type flip flop
entity mydff is
  port (d,clk : in std_logic;
        q : out std_logic);
end mydff;

-- here is the architcture
architecture comp of mydff is
begin
  process(clk)
  begin
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    if rising_edge(clk) then
      q <= d;
    end if;
  end process;
end comp;

SR Flip Flop VHDL Code
-- This comment is before the library and use clauses.
library ieee;
use ieee.std_logic_1164.all;

-- a JK type flip flop triggered on the rising edge of the clock
entity myjkff is
  port (j,k,clk : in std_logic;
        q : out std_logic);
end myjkff;

-- here is the architcture
architecture comp of myjkff is
  signal jkff : std_logic := ‘0’;
begin
  process(clk)
  begin
    if rising_edge(clk) then
      jkff <= (j and (not jkff)) or ((not k) and jkff);
    end if;
  end process;
  q <= jkff;
end comp;

Leveltopulse VHDL Code
-- This comment is before the library and use clauses.
library ieee;
use ieee.std_logic_1164.all;

-- a D type flip flop
entity leveltopulse is
  port (levelin,clk : in std_logic;
        pulseout : out std_logic);
end leveltopulse;

-- here is the architcture (from lecture 7 notes)
architecture comp of leveltopulse is
  component mydff
    port (d,clk : in std_logic;
          q : out std_logic);
  end component;

  signal x,y,z : std_logic;             -- internal signals for flip
                                        -- flop output
begin
  FIRST_FF : mydff port map (
    d   => levelin,
    clk => clk,
    q   => x);
  SECOND_FF : mydff port map (
    d   => x,
    clk => clk,
    q   => y);
  THIRD_FF : mydff port map (
    d   => y,
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    clk => clk,
    q   => z);

  -- now make the final little bit o’ logic which
  -- actually generates the output signal
  pulseout <= y and (not z);
end comp;

Pulsesaver VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use work.mydff;

-- a componenet to assert a level for at least 4 cycles after the pulse has
-- gone low.
entity pulsesaver is
  port (a,clk : in std_logic;
        async : out std_logic);
end pulsesaver;

-- here is the architcture
architecture comp of pulsesaver is
  signal w, x, y, z : std_logic;
begin
  FIRST_FF : mydff port map (
    d   => a,
    clk => clk,
    q   => w);
  SECOND_FF : mydff port map (
    d   => w,
    clk => clk,
    q   => x);
  THIRD_FF : mydff port map (
    d   => x,
    clk => clk,
    q   => y);
  FOUTH_FF : mydff port map (
    d   => y,
    clk => clk,
    q   => z);

  -- if any of these saved levels(w,x,y,z) are high, then the output is high
  async <= w or x or y or z;
end comp;

FSM VHDL Code
-- This comment is before the library and use clauses.
library ieee;
use ieee.std_logic_1164.all;

entity fsm is
  port (resetsync, l0sync, l1sync, f0sync, f1sync : in std_logic;
gosync, auxsync, walk_request, exp, clk : in std_logic;
        state_out : out std_logic_vector(3 downto 0);
        a0, a1, nwe, start_timer,walk_reset : out std_logic;
        rm, ym, gm, rs, ys, gs : out std_logic);

end fsm;

architecture state_machine of fsm is
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  -- rmgs = red main, greed side (so red on the main street, green on the side
  -- street).
  type StateType is (mrsg, mrysy, mgsr, mysry, walk,
                     show_mem, store_mem,
                     blink1, blink2, mrsg_ext, mgsr2);
  -- exact state encodings
  attribute enum_encoding of StateType:
    type is “0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010”;

  -- p_s = present state
  -- n_s = next state
  signal p_s, n_s : StateType;
begin
  -- figure out which state to goto next
  -- the rules are simple:
  -- 1. Only do things on a rising clock edge
  -- 2. if reset is asserted, goto state show_mem
  --    if gosync is asserted, the user has requested action, so set mode
  --     based on functions selected (f0sync and f1sync).
  --   if expired is asserted, then goto the next state in the run cycle
  --   otherwise, stay in the same state
  state_transition:process(exp, resetsync, gosync, f1sync, f0sync, p_s, auxsync, walk_request)
    begin
    -- check reset signal, and set to show_mem state
    if (resetsync = ‘1’) then
n_s <= show_mem;
-- change the machine to one of the four predefined states
        walk_reset <= ‘0’;
    elsif (gosync = ‘1’) then
-- f1f0
-- 00 show_mem
-- 01 store_mem
-- 10 start the normal operation of the lights (in green main,
--                                              red side mode)
-- 11 blink
if ((f1sync = ‘0’) and (f0sync = ‘0’)) then
            n_s <= show_mem;
            start_timer <= ‘0’;
            walk_reset <= ‘0’;
elsif ((f1sync = ‘0’) and (f0sync = ‘1’)) then
    n_s <= store_mem;
            start_timer <= ‘0’;
            walk_reset <= ‘0’;
        elsif ((f1sync =’1’) and (f0sync = ‘0’)) then
            n_s <= mgsr;
            start_timer <= ‘1’;
            walk_reset <= ‘1’;          -- reset the walk signal initially
elsif ((f1sync = ‘1’) and (f0sync = ‘1’)) then
            n_s <= blink1;
            start_timer <= ‘1’;
            walk_reset <= ‘0’;
end if;
    elsif (exp = ‘1’) then
      case p_s is
        when blink1 =>
          n_s <= blink2;
          start_timer <= ‘1’;
          walk_reset <= ‘0’;
        when blink2 =>
          n_s <= blink1;
          start_timer <= ‘1’;
          walk_reset <= ‘0’;
        when mgsr =>
          n_s <= mgsr2;
          start_timer <= ‘1’;
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          walk_reset <= ‘0’;
        when mgsr2 =>
          n_s <= mysry;
          start_timer <= ‘1’;
          walk_reset <= ‘0’;

        when mysry =>
          if walk_request = ‘1’ then    -- if we are waiting for a walk request
            n_s <= walk;
            start_timer <= ‘1’;
            walk_reset <= ‘1’; -- reset the walk latch
          else
            -- skip walk state
            n_s <= mrsg;
            start_timer <= ‘1’;
            walk_reset <= ‘0’;
          end if;
        when walk =>
          n_s <= mrsg;
          start_timer <= ‘1’;
          walk_reset <= ‘0’;

        when mrsg =>
          if auxsync = ‘1’ then -- some cars are waiting still
            n_s <= mrsg_ext;
            start_timer <= ‘1’;
            walk_reset <= ‘0’;
          else
            n_s <= mrysy;
            start_timer <= ‘1’;
            walk_reset <= ‘0’;
          end if;
        when mrsg_ext =>
          n_s <= mrysy;
          start_timer <= ‘1’;
          walk_reset <= ‘0’;

        when mrysy =>
          n_s <= mgsr;
          start_timer <= ‘1’;
          walk_reset <= ‘0’;
        when others =>
          n_s <= p_s;                   -- by defaut, say in the same state
          start_timer <= ‘0’;
          walk_reset <= ‘0’;
      end case;

    else
      n_s <= p_s;              -- by default, STAY IN THE SAME STATE
      start_timer <= ‘0’;
    end if;
  end process state_transition;

  clk_proc : process (clk)
  begin  -- process clkprc
      if rising_edge(clk) then
  p_s <= n_s;
      end if;
  end process clk_proc;

  -- write enable signal
  nwe <= ‘0’ when n_s = store_mem else ‘1’;
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  state_out(0) <= ‘1’ when ((p_s = mrysy) or
                            (p_s = mysry) or
                            (p_s = show_mem) or
                            (p_s = blink1) or
                            (p_s = mrsg_ext)) else ‘0’;
  state_out(1) <= ‘1’ when ((p_s = mgsr) or
                            (p_s = mysry) or
                            (p_s = store_mem) or
                            (p_s = blink1) or
                            (p_s = mgsr2)) else ‘0’;
  state_out(2) <= ‘1’ when ((p_s = walk) or
                            (p_s = show_mem) or
                            (p_s = store_mem) or
                            (p_s = blink1)) else ‘0’;
  state_out(3) <=  ‘1’ when ((p_s = blink2) or
                             (p_s = mrsg_ext) or
                             (p_s = mgsr2)) else ‘0’;

-- set up the light output
  rm <= ‘1’ when ((p_s = store_mem) or
                  (p_s = blink2) or
                  (p_s = walk) or
                  (p_s = mrsg) or
                  (p_s = mrsg_ext) or
                  (p_s = mrysy)) else ‘0’;
  ym <= ‘1’ when ((p_s = blink1) or
                  (p_s = mysry) or
                  (p_s = walk) or
                  (p_s = mrysy)) else ‘0’;
  gm <= ‘1’ when ((p_s = store_mem) or
                  (p_s = mgsr) or
                  (p_s = mgsr2) or
                  (p_s = walk)) else ‘0’;
  rs <= ‘1’ when ((p_s = show_mem) or
                  (p_s = blink1) or
                  (p_s = mgsr) or
                  (p_s = mgsr2) or
                  (p_s = mysry) or
                  (p_s = walk)) else ‘0’;
  ys <= ‘1’ when ((p_s = blink2) or
                  (p_s = mysry) or
                  (p_s = walk) or
                  (p_s = mrysy)) else ‘0’;
  gs <= ‘1’ when ((p_s = show_mem) or
                  (p_s = walk) or
                  (p_s = mrsg) or
                  (p_s = mrsg_ext)) else ‘0’;

  -- set up address output
  a1 <= ‘1’ when ((l1sync = ‘1’ and p_s = store_mem) or
                  (l1sync = ‘1’ and p_s = show_mem) or
                  (p_s = blink1) or
                  (p_s = blink2) or
                  (p_s = mgsr2) or
                  (p_s = walk) or
                  (p_s = mrsg_ext)) else ‘0’;
  a0 <= ‘1’ when ((l0sync = ‘1’ and p_s = store_mem) or
                  (l0sync = ‘1’ and p_s = show_mem) or
                  (p_s = blink1) or
                  (p_s = blink2) or
                  (p_s = mgsr) or
                  (p_s = mrsg)) else ‘0’;

end architecture state_machine; --”architecture” is optional; for clarity
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FSM Block VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use work.leveltopulse;
use work.pulsesaver;

entity userinput_synchronizer is
    port (l0,l1 : in std_logic;
  l0sync,l1sync : out std_logic;
  f0,f1 : in std_logic;
  f0sync,f1sync : out std_logic;
  reset : in std_logic;
  resetsync : out std_logic;
  go,traffic_sensor : in std_logic;
  gosync,auxsync : out std_logic;
  clk : in std_logic);
end userinput_synchronizer;

architecture arch of userinput_synchronizer is
begin
  process(clk,l0,l1,f0,f1,reset,go,traffic_sensor)
    begin
      if rising_edge(clk) then
        l0sync <= l0;
        l1sync <= l1;
        f0sync <= f0;
        f1sync <= f1;
        resetsync <= reset;
--        auxsync <= traffic_sensor;
      end if;
    end process;

---now add in a level to pulse for the go
  GOSYNCER: leveltopulse
    port map (
      levelin  => go,
      pulseout => gosync,
      clk      => clk);

--now, save the traffic sync for a few clocks
    PULSESYNC : pulsesaver
      port map (
        a     => traffic_sensor,
        async => auxsync,
        clk   => clk);

end architecture;
library ieee;

use ieee.std_logic_1164.all;
use work.fsm;
use work.userinput_synchronizer;
use work.leveltopulse;
use work.mydff;
use work.myjkff;

-- the fsm_block is an organizational unit for
-- setting up all of the appropriate synchronization
-- to the fsm itself
entity fsm_block is
  port (reset, l0, l1, f0, f1 : in std_logic;
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go, traffic_sensor : in std_logic;
exp, walk_in : in std_logic;
clk : in std_logic;
state_out : out std_logic_vector(3 downto 0);
        a0, a1, nwepulse, start_timer : out std_logic;
        rm, ym, gm, rs, ys, gs : out std_logic);
  end fsm_block;

architecture arch of fsm_block is

    signal resetsync, l0sync, l1sync, f0sync, f1sync : std_logic := ‘0’;
    signal gosync, auxsync : std_logic := ‘0’;

    -- write enable signals (so we can catch a level and convert to a pulse)
    signal we,wepulse : std_logic := ‘0’;
    signal nwe : std_logic := ‘1’;

    signal walk_request_latched : std_logic := ‘0’;
    signal walk_clear : std_logic := ‘0’;

    -- internal sart timer signal so that we can make sure that the ram has
    -- read out the data before we start the timer
    signal start_timer_internal : std_logic;
begin  -- arch
    -- set up the user input synchronizer
    UISYNCER : userinput_synchronizer
port map (
    clk => clk,
    reset => reset,
    resetsync => resetsync,
    l0 => l0,
    l0sync => l0sync,
    l1 => l1,
    l1sync => l1sync,
    f0 => f0,
    f0sync => f0sync,
    f1 => f1,
    f1sync => f1sync,
    go => go,
    gosync => gosync,
    traffic_sensor => traffic_sensor,
    auxsync => auxsync);

    -- wire up a synchronizer from the write enable line of the fsm
    -- to the actual write enable strobe from the fsm_block
    we <= not nwe;
    WESYNCER : leveltopulse
port map (
    clk => clk,
    levelin => we,
    pulseout => wepulse);
    nwepulse <= not wepulse;

    -- set up a jk flip flop on the walkrequest input
    WALKLATCH : myjkff
      port map (
        j   => walk_in,
        k   => walk_clear,
        clk => clk,
        q   => walk_request_latched);

    -- set up the actual fsm
    BRAINS : fsm
port map (
    clk => clk,
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    resetsync => resetsync,
    l0sync => l0sync,
    l1sync => l1sync,
    f0sync => f0sync,
    f1sync => f1sync,
    gosync => gosync,
    auxsync => auxsync,
    exp => exp,
    walk_request => walk_request_latched,
            walk_reset => walk_clear,
    state_out => state_out,
    a0 => a0,
    a1 => a1,
    nwe => nwe,
    start_timer => start_timer_internal,
            rm => rm,
            ym => ym,
            gm => gm,
            rs => rs,
            ys => ys,
            gs => gs);

    --now, catch the start timer signal with a d flip flop to delay it another
    --cycle;
    STARTSYNC : mydff
      port map (
        d   => start_timer_internal,
        clk => clk,
        q   => start_timer);
end arch;

DTimer VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

-- the D-Timer for the traffic light controller.
-- This logic block is used as a counter. It counts from
-- 0 to some specified number and the asserts the exp signal.

-- the timer is 4 bits wide.

-- when start is asserted, the max_cnt is loaded.
-- when the counter output = max_cnt, then exp is asserted and
-- the timer is reset.
entity dtimer is
  port (start, clk : in std_logic;
        onesec : in std_logic;
        max_cnt: in std_logic_vector(3 downto 0);  -- the max count
                                                   -- until exp = ‘1’
        cur_cnt: out std_logic_vector(3 downto 0);
        exp : out std_logic);                       -- expired signal
end dtimer;

-- here is the architcture
architecture comp of dtimer is
  signal cur_max : std_logic_vector(3 downto 0);
  signal cur_cnt_int : std_logic_vector(3 downto 0);
begin
  process (clk, start, max_cnt, onesec)
    begin
      if rising_edge(clk) then
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        if start = ‘1’ then
          cur_max <= max_cnt;               -- save the max_cntimum
          cur_cnt_int <= “0000”;                -- reset the count
        elsif  (onesec = ‘1’) then
          if not (cur_cnt_int = cur_max) then
            cur_cnt_int <= cur_cnt_int + 1;               -- increment count
          end if;
        end if;
      end if;
    end process;

    cur_cnt <= cur_cnt_int;

    -- the exp signal is asserted when count equals max_cnt
    exp <= ‘1’ when (cur_cnt_int = cur_max) else ‘0’;
end comp;

Divider (one second generator) VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;                 -- so we can use ‘+’

-- a clock divider for the generating the 1/sec pulses
entity divider is
  port (
    clk, start : in  std_logic;
    onesec     : out std_logic);
end divider;

architecture comp of divider is
  signal cnt : std_logic_vector(7 downto 0);
begin
  process(clk,start)
  begin
    if rising_edge(clk) then
      if start = ‘1’ then               -- if we are starting, reset the count
        cnt <= (others => ‘0’);
      else
        if cnt = “11100001” then
          cnt <= (others => ‘0’);       -- start counting again
        else
          cnt <= (cnt + 1);           -- increment the count
        end if;
      end if;
    end if;
  end process;

  onesec <= ‘1’ when cnt = “11100001” else ‘0’;
end comp;

CPLD Chunk Code (top level entity)
library ieee;
use ieee.std_logic_1164.all;
use work.dtimer;
use work.divider;
use work.leveltopulse;
use work.fsm_block;

-- set up the top level CPLD layout
entity cpld_chunk is
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  port (
    clk       : in  std_logic;
    cur_cnt   : out std_logic_vector(3 downto 0);
    mem_data  : in  std_logic_vector(3 downto 0);
    onesec_out: out std_logic;
    start_out : out std_logic;
    exp_out   : out std_logic;

    reset     : in  std_logic;
    f0,f1     : in  std_logic;
    l0,l1     : in  std_logic;
    go        : in  std_logic;
    traffic   : in  std_logic;
    walk      : in  std_logic;

    current_state : out std_logic_vector(3 downto 0);
    a0,a1     : out std_logic;
    nwepulse  : out std_logic;

    rm,ym,gm  : out std_logic;          -- main street lights
    rs,ys,gs  : out std_logic);         -- side street lights

  ATTRIBUTE pin_avoid of cpld_chunk :ENTITY is

--    “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

      “ 12 19 73  “&      -- These pins are the interconnect bus
                          -- for CPLD 2, 3, and 4. They are Serial I/O
                          -- pins for CPLD 1.

      “ 13         “&     -- This is I0-9. Can screw up the clock of C1. Be
                          -- careful when using this.

--        The CPLD has 4 clock pins that can also be used as input pins.
--        However, all of them are tied together.
--        The 4 clock pins are “ 20 23 62 65 “ .
--        Depending on your design, the programmer will assign of them
--        to be the clock input, and use the others as general-purpose inputs.
--        This can be quite frustrating.
--        We will thus disable 3 of the 4 and hope the compiler likes our
--        choice. If it doesn’t, we will just have to pick another one.

--       Lets use clock 1 and disable clock 2,3, and 4.

         “ 23 62 65 “&

--       If we need to use clock 2 : then use  “ 20 62 65 “&
--       If we need to use clock 3 : then use  “ 20 23 65 “&
--       If we need to use clock 4 : then use  “ 20 23 62 “&

    “ 14 35 41 51 72 “ & -- Used by Programmer. No external connection.
    “ 30 31 36 37 40 45”;               -- hibits of the hex leds

  attribute pin_numbers of cpld_chunk:entity is
    “start_out:16 “ &
    “cur_cnt(0):46 cur_cnt(1):47 cur_cnt(2):48 cur_cnt(3):49 “ &
    “mem_data(0):24 mem_data(1):25 mem_data(2):26 mem_data(3):27 “ &
    “onesec_out:15 exp_out:17 “ &
    “current_state(0):8 current_state(1):10 current_state(2):18 current_state(3):68 “ &
    “f0:28 f1:29 l0:33 l1:34 “ &
    “a0:38 a1:39 “ &
    “go:3 reset:4 traffic:5 walk:6 “ &
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    “nwepulse:7 “ &
    “rm:75 ym:76 gm:77 “ &
    “rs:78 ys:79 gs:80”;

  end cpld_chunk;

architecture arch of cpld_chunk is
  signal exp      : std_logic;
  signal exp_long : std_logic;
  signal onesec   : std_logic;
  signal start    : std_logic;
begin  -- arch
  -- one second divider
  DIV: divider
    port map (
      clk    => clk,
      start  => start,
      onesec => onesec);

  -- timer counting
  DTIMER: dtimer
    port map (
      clk => clk,
      start => start,
      onesec => onesec,
      max_cnt => mem_data,
      cur_cnt => cur_cnt,
      exp => exp_long);
  -- sync exp signal to system clock
  EXPSYNC : leveltopulse
    port map (
      levelin  => exp_long,
      pulseout => exp,
      clk      => clk);

  -- instantiate the fsm (dear god)
  BRAINS : fsm_block
    port map (
      reset          => reset,
      f0             => f0,
      f1             => f1,
      l0             => l0,
      l1             => l1,
      go             => go,
      traffic_sensor => traffic,
      walk_in        => walk,
      state_out      => current_state,
      a0             => a0,
      a1             => a1,
      nwepulse       => nwepulse,
      rm             => rm,
      ym             => ym,
      gm             => gm,
      rs             => rs,
      ys             => ys,
      gs             => gs,
      exp            => exp,
      start_timer    => start,
      clk            => clk);

  -- pass ome interesting signals out so we can view them externally
  onesec_out <= onesec;
  exp_out <= exp;
  start_out <= start;
end arch;
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