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Basic Idea

Filter A
a=pop();

b=pop(); 

c=(a+b)/2 + 1;

push(c);

Matrix Mult.
[ ]1=b

x y

y = xA + b
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What is a Linear Filter?

n Generic filters calculate some outputs 
(possibly) based on their inputs. 

n Linear filters: outputs (yj) are weighted 
sums of the inputs (xi) plus a constant.
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for b constant
wi constant for all i
N is the number of inputs



Linearity and Matricies

n Matrix multiply is exactly weighted sum
n We treat inputs (xi) and outputs (yj) as 

vectors of values (x, and y respectively)
n Filter is represented as a matrix of 

weights A and a vector of constants b
n Therefore, filter represents the equation 

y = xA + b



Equation Example, y1
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Equation Example, y2



















3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

aaa
aaa
aaa
aaa[ ]4321 xxxx

[ ]321 yyy

[ ]321 bbb

)( 22,442,332,22,112 baxaxxaaxy ++++=

+ =



Equation Example, y3
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Usefulness of Linearity

n Not all filters compute linear functions
n push(pop()*pop());

n Many fundamental DSP filters do
n DFT/FFT
n DCT
n Convolution/FIR
n Matrix Multiply



Example: DFT Matrix
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Example: IDFT Matrix
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Usefullness, cont.

n Matrix representations
n Are “embarrassingly parallel” 1

n Expose redundant computation
n Let us take advantage of existing 

work in DSP field
n Well understood mathematics

1: Thank you, Bill Thies
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Dataflow Analysis

n Basic idea: convert the general code of 
a filter’s work function into an affine 
representation (eg y=xA+b)
n The A matrix represents the linear 

combination of inputs used to calculate 
each output.

n The vector b represents a constant offset 
that is added to the combination.



“Linear” Dataflow Analysis

n Much like standard constant prop.
n Goal: Have a vector of weights and a 

constant that represents the argument 
to each push statement which become 
a column in A and an entry in b.

n Keep mappings from variables to their 
linear forms (eg vector + constant).



“Linear” Dataflow Analysis

n Of course, we need the appropriate 
generating cases, eg

n constants

n pop/peek(x)
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“Linear” Dataflow Analysis

n Like const prop, confluence operator is 
set union. 

n Need combination rules to handle 
things like multiplication and addition 
(vector add and constant scale)



Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;



Ridiculous Example
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Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;
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Ridiculous Example

a=peek(2);
b=pop();
c=pop();
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Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
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Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;
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Constructing matrix A

a 4
3
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push(b); 
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Constructing matrix A
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Constructing matrix A

a 4
3
2
1

+
















b 8
7
6
5

+
















filter code

push(b);
push(a);

Filter A:
















=

73
62
51

A [ ]84=b



Big Picture

FIR Filter
weights1 = {1,2,3};

weights2 = {4,5,6};

float sum1 = 0; float sum2 = 0; 

float mean1 = 5; mean2 = 17;

for (int i=0; i<3; i++) {

sum1 += weights1[i]*peek(3-i-1);

sum1 += weights1[i]*peek(3-i-1);

}

push(sum2 – mean2);

push(sum1 – mean1); 

pop();

push = 2
pop  = 1
peek = 3



Big Picture, cont.

x y

y = xA + b
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Combining Filters

n Basic idea: combine pipelines, splitjoins 
(and possibly feedback loops) of linear 
filters together

n End up with a single large matrix 
representation

n The details are tricky in the general 
case (eg I am still working on them)



Combining Pipelines

[A] [B]

ye olde pipeline

[C]
single filter

The matrix C is 
calculated as A’ B’ where 
A’ and B’ have been 
appropriately scaled and 
duplicated to make the 
dimensions work out.

In the case where 
peek(B) ≠ pop(B), we 
might have to use two 
stage filters or duplicate 
some work to get the 
dimensions to work out.



Combining Split Joins

[AN]

ye olde SplitJoin

[C]

single 
filter

splitter

[A1]

[A2]

[A3]

joiner
A split join reorders data, so the columns of C are interleaved copies of the columns 
of A1 through AN.

Matching the rates of A1 through AN is a challenge that I am still working out.



Combining Feedback Loops

[B]

ye olde FeedbackLoop

splitter

[A]

joiner

?

It is unclear if we can do anything of use with a FeedbackLoop
construct. Eigen values might give information about stability, 
but it is not clear if that is useful… more thought is needed.
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Performance Optimizations
n Take advantage of our compile time 

knowledge of the matrix coefficients.
n eg don’t waste computation on zeros

n Try and leverage existing DSP work on 
factoring matricies.

n Try to recognize parallel structures in 
our matrices.

n Use frequency analysis.



Factoring for Performance
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SPL/SPIRAL
n Software package that will attempt to find 

a fast implementation signal processing 
algorithms described as matrices. 

n It attempts to find a sparse factorization of 
an arbitrary matrix.

n It can automatically derive FFT (eg the 
Cooley-Turkey algorithm) from DFT 
definition.

n Claim that their performance is ≈ FFTW1.
1. See http://www.fftw.org



Recognize Parallel Structure

n We can go from SplitJoin to matrix.

n Perhaps we can recognize the reverse 
transformation.

n Also, implement blocked matrix multiply 
to keep parallel resources busy.



Frequency Analysis

[A]

DFT [A’] IDFT

Instead of computing the matrix 
product straight up, possibly go to 
frequency domain. 

Rids us of offset vector (added to 
response at f=0).

Might allow additional optimizations 
(because of possible symmetries 
exposed in frequency domain).



Work left to do

n Implementation of single filter 
analysis.

n Combining hierarchical constructs.
n Understand the math of automatic 

matrix factorizations (group theory).
n Analyze frequency analysis.
n Implement optimizations.
n Get results.



Questions for the Future
n Are there any other optimizations?
n Can we produce inverted matrices

n programmer codes up transmitter and StreamIt 
automatically creates the receiver.1

n How many cycles of a “real” DSP application 
are spent computing linear functions?

n Can we combine the linear description of 
what happens inside a filter with the SARE 
representation of what is happening between 
them? (POPL paper)

1. Thank you, BT


