
Linear Filters in StreamIt

Andrew A. Lamb
MIT

Laboratory for Computer Science
Computer Architecture Group

8/29/2002

Outline

n Introduction

n Dataflow Analysis

n Hierarchal Matrix Combinations

n Performance Optimizations

Basic Idea

Filter A
a=pop();

b=pop();

c=(a+b)/2 + 1;

push(c);

Matrix Mult.
[]1=b

x y

y = xA + b









=

21
21

A

What is a Linear Filter?

n Generic filters calculate some outputs
(possibly) based on their inputs.

n Linear filters: outputs (yj) are weighted
sums of the inputs (xi) plus a constant.

bxwxwxwy

bxwy

NN

Ni
ii

++++=

+= ∑
∈

(...)2211

],1[

for b constant
wi constant for all i
N is the number of inputs

Linearity and Matricies

n Matrix multiply is exactly weighted sum
n We treat inputs (xi) and outputs (yj) as

vectors of values (x, and y respectively)
n Filter is represented as a matrix of

weights A and a vector of constants b
n Therefore, filter represents the equation

y = xA + b

Equation Example, y1



















3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

aaa
aaa
aaa
aaa[]4321 xxxx

[]321 yyy

[]321 bbb

)(11,441,331,21,111 baxaxxaaxy ++++=

+ =

Equation Example, y2



















3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

aaa
aaa
aaa
aaa[]4321 xxxx

[]321 yyy

[]321 bbb

)(22,442,332,22,112 baxaxxaaxy ++++=

+ =

Equation Example, y3



















3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

aaa
aaa
aaa
aaa[]4321 xxxx

[]321 yyy

[]321 bbb

)(33,443,333,23,113 baxaxxaaxy ++++=

+ =

Usefulness of Linearity

n Not all filters compute linear functions
n push(pop()*pop());

n Many fundamental DSP filters do
n DFT/FFT
n DCT
n Convolution/FIR
n Matrix Multiply

Example: DFT Matrix

Nj
N

NN
N

N
N

N
N

N
NNN

N
NNN

N

ew

www

www
www

F

/2

)1()1(1)1(0)1(

)1(11101

)1(01000

...
............

...

...

π−

−•−•−•−

−•••

−•••

=



















=

1,...,2,1,0,)()(
1

0

/2 −=≡ ∑
−

=

− NmenxmX
N

n

Nnmj πDFT:

row n

column m

Example: IDFT Matrix

1,...,2,1,0,)(
1

)(
1

0

/2 −=≡ ∑
−

=

NnemX
N

nx
N

m

Nmnj π
IDFT:

Nj
N

NN
N

N
N

N
N

N
NNN

N
NNN

N

e
N

w

www

www
www

F

/2

)1()1(1)1(0)1(

)1(11101

)1(01000

1

1

...
............

...

...

π





=



















=

−•−•−•−

−•••

−•••

−

row m

column n

Usefullness, cont.

n Matrix representations
n Are “embarrassingly parallel” 1

n Expose redundant computation
n Let us take advantage of existing

work in DSP field
n Well understood mathematics

1: Thank you, Bill Thies

Outline

n Introduction

n Dataflow Analysis

n Hierarchal Matrix Combinations

n Performance Optimizations

Dataflow Analysis

n Basic idea: convert the general code of
a filter’s work function into an affine
representation (eg y=xA+b)
n The A matrix represents the linear

combination of inputs used to calculate
each output.

n The vector b represents a constant offset
that is added to the combination.

“Linear” Dataflow Analysis

n Much like standard constant prop.
n Goal: Have a vector of weights and a

constant that represents the argument
to each push statement which become
a column in A and an entry in b.

n Keep mappings from variables to their
linear forms (eg vector + constant).

“Linear” Dataflow Analysis

n Of course, we need the appropriate
generating cases, eg

n constants

n pop/peek(x)

c+
















0
0
0

0
0
1
0

+
















“Linear” Dataflow Analysis

n Like const prop, confluence operator is
set union.

n Need combination rules to handle
things like multiplication and addition
(vector add and constant scale)

Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;

Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;

0
0
0
1

+
















a

Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;

0
1
0
0

+
















b

0
0
0
1

+
















a

Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;

0
0
1
0

+
















c

0
1
0
0

+
















b

0
0
0
1

+
















a

Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;

0
2
0
1

+
















d

0
0
1
0

+
















c

0
1
0
0

+
















b

0
0
0
1

+
















a

Ridiculous Example

a=peek(2);
b=pop();
c=pop();
pop();
d=a+2b;
e=d+5;

e

0
2
0
1

+
















d

0
0
1
0

+
















c

0
1
0
0

+
















b

0
0
0
1

+
















a

5
2
0
1

+
















Constructing matrix A

a 4
3
2
1

+
















b 8
7
6
5

+
















filter code

push(b);
push(a);

Filter A:
















=

00
00
00

A []00=b

Constructing matrix A

a 4
3
2
1

+
















b 8
7
6
5

+
















filter code

push(b);
push(a);

Filter A:
















=

70
60
50

A []80=b

Constructing matrix A

a 4
3
2
1

+
















b 8
7
6
5

+
















filter code

push(b);
push(a);

Filter A:
















=

73
62
51

A []84=b

Big Picture

FIR Filter
weights1 = {1,2,3};

weights2 = {4,5,6};

float sum1 = 0; float sum2 = 0;

float mean1 = 5; mean2 = 17;

for (int i=0; i<3; i++) {

sum1 += weights1[i]*peek(3-i-1);

sum1 += weights1[i]*peek(3-i-1);

}

push(sum2 – mean2);

push(sum1 – mean1);

pop();

push = 2
pop = 1
peek = 3

Big Picture, cont.

x y

y = xA + b
















=

41
52
63

A

size(x) = 3
size(y) = 2

Matrix Mult.

[]175=b

Outline

n Introduction

n Dataflow Analysis

n Hierarchal Matrix Combinations

n Performance Optimizations

Combining Filters

n Basic idea: combine pipelines, splitjoins
(and possibly feedback loops) of linear
filters together

n End up with a single large matrix
representation

n The details are tricky in the general
case (eg I am still working on them)

Combining Pipelines

[A] [B]

ye olde pipeline

[C]
single filter

The matrix C is
calculated as A’ B’ where
A’ and B’ have been
appropriately scaled and
duplicated to make the
dimensions work out.

In the case where
peek(B) ≠ pop(B), we
might have to use two
stage filters or duplicate
some work to get the
dimensions to work out.

Combining Split Joins

[AN]

ye olde SplitJoin

[C]

single
filter

splitter

[A1]

[A2]

[A3]

joiner
A split join reorders data, so the columns of C are interleaved copies of the columns
of A1 through AN.

Matching the rates of A1 through AN is a challenge that I am still working out.

Combining Feedback Loops

[B]

ye olde FeedbackLoop

splitter

[A]

joiner

?

It is unclear if we can do anything of use with a FeedbackLoop
construct. Eigen values might give information about stability,
but it is not clear if that is useful… more thought is needed.

Outline

n Introduction

n Dataflow Analysis

n Hierarchal Matrix Combinations

n Performance Optimizations

Performance Optimizations
n Take advantage of our compile time

knowledge of the matrix coefficients.
n eg don’t waste computation on zeros

n Try and leverage existing DSP work on
factoring matricies.

n Try to recognize parallel structures in
our matrices.

n Use frequency analysis.

Factoring for Performance





































=

4,43,42,41,4

3,32,31,3

2,21,2

1,1

4,4

3,3

2,2

1,1

0
00
000

000
000
000
000

cccc
ccc

cc
c

b
b

b
b

BC



















=

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

aaaa
aaaa
aaaa
aaaa

A

16 multiplies

12 adds

14 multiplies

6 adds

SPL/SPIRAL
n Software package that will attempt to find

a fast implementation signal processing
algorithms described as matrices.

n It attempts to find a sparse factorization of
an arbitrary matrix.

n It can automatically derive FFT (eg the
Cooley-Turkey algorithm) from DFT
definition.

n Claim that their performance is ≈ FFTW1.
1. See http://www.fftw.org

Recognize Parallel Structure

n We can go from SplitJoin to matrix.

n Perhaps we can recognize the reverse
transformation.

n Also, implement blocked matrix multiply
to keep parallel resources busy.

Frequency Analysis

[A]

DFT [A’] IDFT

Instead of computing the matrix
product straight up, possibly go to
frequency domain.

Rids us of offset vector (added to
response at f=0).

Might allow additional optimizations
(because of possible symmetries
exposed in frequency domain).

Work left to do

n Implementation of single filter
analysis.

n Combining hierarchical constructs.
n Understand the math of automatic

matrix factorizations (group theory).
n Analyze frequency analysis.
n Implement optimizations.
n Get results.

Questions for the Future
n Are there any other optimizations?
n Can we produce inverted matrices

n programmer codes up transmitter and StreamIt
automatically creates the receiver.1

n How many cycles of a “real” DSP application
are spent computing linear functions?

n Can we combine the linear description of
what happens inside a filter with the SARE
representation of what is happening between
them? (POPL paper)

1. Thank you, BT

