Linear Filters in Streamlt

Andrew A. Lamb

MIT
Laboratory for Computer Science

Computer Architecture Group
8/29/2002

Outline

s INntroduction
= Dataflow Analysis
s Hierarchal Matrix Combinations

= Performance Optimizations

Basic ldea

Filter A
OOOOQQ»apop();
b=pop();
c=(atbh)/2 + 1,
push(c);
Matri x Mult.
X é12
A= gk b=l
- &2

y = xA+ Db

@O00O0O0OO
>

What 1s a Linear Filter?

= Generic filters calculate some outputs
(possibly) based on their inputs.

= Linear filters: outputs (y;) are weighted
sums of the inputs (x)) plus a constant.

o for b constant
y = .Aa W X +b w; constant for all |
IT1,N] N is the number of inputs

Y = WX WX, + () WXy +D

Linearity and Matricies

= Matrix multiply Is exactly weighted sum

= We treat inputs (x;) and outputs (y;) as
vectors of values (x, and y respectively)

= Filter is represented as a matrix of
weights A and a vector of constants b

= Therefore, filter represents the equation
y=xA+Db

Equation Example, vy,

Y1 = (X1a1,1 T XAy, t X305, T X8, T b)

Equation Example, v,

% % Xbéa, ﬁ_ a0 [b () bl
e u
éaz,1 A ; az,su +

€, |87 35U

é u
éa4,1 %74} a4,30

Yo = (X1a1,2 T XA, T X85, T X, , t b,)

v @) Vil

Equation Example, y,

sz X3 % éam ¥ /é;\?u b b @

u
~A a a, 4~
2,1 2,2 2’“[:' -

&, A, (g

ac
éa4,1 a, - %74%0

Y3 = (X33 + Xa, 5 + X385 5+ X,8, 5 1)

N

v v, ()

Usefulness of Linearity

= Not all filters compute linear functions
= push(pop() *pop());

= Many fundamental DSP filters do
« DFT/FFT
« DCT
= Convolution/FIR
= Matrix Multiply

Example: DFT Matrix

N-1
DFT:X(m)° g x(n)e '#™N m=012,..,N- 1

n=0

e wy® o owyt e W e

e .0 1 (N-1) U
S ow L we
N T A ;

€ . u

e u

anAN-1-0 N-1)-1 (N-1)-(N-1) X

eWN VVI(\I e W u

— A~ J2p/N
WN_er

Example: IDFT Matrix

1 N-1 _
IDET:X(n) © ﬁé X(m)e!®™N n=012,...,N-1
m=0
é W} wyt o WP
e .0 1 .(N-1) u column n
e .. u
?W(N-l)-o w91 W(N-l)-(N-l)l,J
N N u
WN %1_eJZpIN

eNﬂ

Usefullness, cont.

= Matrix representations

1: Thank you, Bill Thies

= Are “embarrassingly parallel” *
= EXpose redundant computation

= Let us take advantage of existing
work in DSP field

= Well understood mathematics

Outline

= Introduction
= Dataflow Analysis
s Hierarchal Matrix Combinations

= Performance Optimizations

Dataflow Analysis

= Basic idea: convert the general code of
a filter’s work function into an affine
representation (eg y=xA+Db)
= The A matrix represents the linear

combination of inputs used to calculate
each output.

= The vector b represents a constant offset
that is added to the combination.

“Linear” Dataflow Analysis

= Much like standard constant prop.

= Goal: Have a vector of weights and a

constant that represents the argument
to each push statement which become

a column in A and an entry in b.

= Keep mappings from variables to their
linear forms (eg vector + constant).

“Linear” Dataflow Analysis

= Of course, we need the appropriate
generating cases, eg

e0u

= constants > 203““0
&g
e0u
u

= pop/peek(x) . >
&g

“Linear” Dataflow Analysis

= Like const prop, confluence operator Is
set union.

= Need combination rules to handle
things like multiplication and addition
(vector add and constant scale)

Ridiculous Example

a=peek(2);
b=pop() ;
c=pop() ;
pop();
d=a+2Db;
e=d+5;

Ridiculous Example

a=peek(2); &0
b=pop();

c=pop() ;

pop() ;

d=a+2b:

e=d+5;

Ridiculous Example

a=peek(2); &0
b=pop(); @g
c=pop() ; b T
pop();

d=a+2Db;

e=d+5;

Ridiculous Example

a=peek(2); 2
b=pop() ;

c=pop() ; b
pop() ;

d=a+2b; C
e=d+5;

S

u
L5+0
&g
Qi

u
L5+0
glp
Qi

u
&L+ 0

&g

Ridiculous Example

a=peek(2); 2
b=pop() ;
c=pop() ; b
pop();
d=a+2b: C
e=d+5;

d

S

u
L5+0
&g
Qi

u
L5+0
glp
Qi

u
lg+O
&g
S

u
£0;+0

824

Ridiculous Example

a
a=peek(2);
b=pop(); .
c=pop() ;
pop() ;
d=a+2b: C
e=d+5;
d
e

S

u
g0
&g
Qi

u
L5+0
glp
Qi

u
lg+O
&g
S

u
g0
e2g
&l

u
£0;+5

820

Constructing matrix A

Filter A:
eli
a - e
filter code 83
esu
b . ut8
push(b) ; &7d
push(a);
0 O
A=% oY b=[o 0
0 0 b=[0 0]
€ 0Og

Constructing matrix A

Filter A:
eli
a - e
filter code 83
esu
b . ut8
push(b); <— &’d
push(a);
O 5
A=% 6Y b=[0 8
0 6 b=[0 8§
O 7

Constructing matrix A

Filter A:
eli
u
. a > &t
filter code 834
esu
b » &0;*8
push(b); &'t
push(a);, «—

€l 50

U -

6, b=[4 8]
:

A=

BOoRP

Big Picture

OOOQQQ>

FIR Filter

wei ghtsl = {1, 2, 3};
wei ghts2 = {4,5, 6};
float suml = 0; float sunR = O;
float meanl = 5; nean2 = 17,
for (int i=0; i<3; i++) {
suml += wei ghtsl[i]*peek(3-i-1);
suml += wei ghtsl[i]*peek(3-i-1);
}
push(sun? — nean2);

push(sunl — neanl);

@000 0OO

pop() ;
push = 2
pop =1
peek = 3

Big Picture, cont.

Matrix Mult.
> & Ou
A = ‘32 5u

él 4@1

=[5 17

y = xA+ Db

size(x) =3
size(y) = 2

Outline

= INntroduction
= Dataflow Analysis
s Hierarchal Matrix Combinations

= Performance Optimizations

Combining Filters

= Basic idea: combine pipelines, splitjoins
(and possibly feedback loops) of linear
filters together

= End up with a single large matrix
representation

= The detalils are tricky in the general
case (eg | am still working on them)

' [A] —1[B]

ye olde pipeline

|

—[C]

single filter

Combining Pipelines

The matrix C Is
calculated as A’ B’ where
A’ and B’ have been
appropriately scaled and
duplicated to make the
dimensions work out.

In the case where
peek(B) * pop(B), we
might have to use two
stage filters or duplicate
some work to get the
dimensions to work out.

Combining Split Joins

[A,]

A\ 4
Jends

c]l .

single
filter

Jauiof
\ 4

[Ax]

ye olde SplitJoin

A split join reorders data, so the columns of C are interleaved copies of the columns
of A, through A,.

Matching the rates of A, through A, is a challenge that | am still working out.

Combining Feedback Loops

[A]l —

Janids
v

|
Jaulol

[B] |

ye olde FeedbackLoop

It is unclear if we can do anything of use with a FeedbackLoop
construct. Eigen values might give information about stability,
but it is not clear if that is useful... more thought is needed.

Outline

= INntroduction
= Dataflow Analysis
s Hierarchal Matrix Combinations

» Performance Optimizations

Performance Optimizations

= Take advantage of our compile time
knowledge of the matrix coefficients.

= €g don’t waste computation on zeros

= Try and leverage existing DSP work on
factoring matricies.

= Try to recognize parallel structures in
our matrices.

= Use frequency analysis.

Factoring for Performance

gam A, Qg 3143 16 multiplies
A= §a2,1 o Y3 a2,4@ 12 adds

ga&l a3,2 a3,3 a343

€1 Ao Q3 Gy

gbm 0 0 O gal O 0 O 3 14 multiplies
BC = {eo Do 00 (g1 2 0 0 (6 adds

60 0 b, Ol ¢, ¢, 04

S0 0 0 b, :

e 4,4 LEC4,1 C4,2 C4,3 C4,4u

SPL/SPIRAL

= Software package that will attempt to find
a fast implementation signal processing
algorithms described as matrices.

= It attempts to find a sparse factorization of
an arbitrary matrix.

= |t can automatically derive FFT (eg the
Cooley-Turkey algorithm) from DFT
definition.

= Claim that their performance is » FFTW<.

1. See http://www.fftw.org

Recognize Parallel Structure

= We can go from SplitJoin to matrix.

= Perhaps we can recognize the reverse
transformation.

= Also, implement blocked matrix multiply
to keep parallel resources busy.

Frequency Analysis

Instead of computing the matrix
product straight up, possibly go to
frequency domain.

Rids us of offset vector (added to
response at f=0).

Might allow additional optimizations
(because of possible symmetries
exposed in frequency domain).

—{orr e

Work left to do

= Implementation of single filter
analysis.

= Combining hierarchical constructs.

= Understand the math of automatic
matrix factorizations (group theory).

= Analyze frequency analysis.
= Implement optimizations.
= Get results.

Questions for the Future

= Are there any other optimizations?

= Can we produce inverted matrices

= programmer codes up transmitter and Streamlt
automatically creates the receiver.!
= How many cycles of a “real” DSP application
are spent computing linear functions?

= Can we combine the linear description of
what happens inside a filter with the SARE
representation of what is happening between
them? (POPL paper)

1. Thank you, BT

